Ajit Srivastava

Emory University

Ajit Srivastava

2D Materials - A New Platform for Strong Light-Matter Interactions


A recent addition to low-dimensional materials are monolayer transition metal dichalcogenides (TMDs), such as WSe2, with an atomically thin, honeycomb lattice and optical band gaps. In addition to spin, charge carriers in TMDs exhibit a valleydegree of freedom, which can be optically addressed using circularly polarized light, opening up exciting possibilities for valleytronics". Another curious aspect of TMDs lies in the non-trivial geometry of their band structure which gives rise to equal but opposite Berry curvature, an effective magnetic field in the momentum space. Owing to unusually strong Coulomb interactions in truly 2D limit, optical spectra of monolayer TMDs is dominated by tightly bound excitons that are expected to strongly couple to light and form stable polaritons - half light, half matter excitations.

In this talk, I will begin by presenting our recent results on valley Zeeman effect, where in analogy to spins, valleys shift in energy with magnetic field. Next, I will discuss our theoretical results on how the non-trivial geometry of Bloch bands modifies the excitonic fine structure of TMDs resulting in an orbital Zeeman effect in reciprocal space and a Lamb-like shift of levels. Finally, I will present our recent results on the observation of microcavity polaritons confirming the strong light-matter interactions in these materials. The presence of valley degree of freedom, non-trivial geometry of bands, and the possibility of introducing non-linearities in form of quantum emitters makes polaritons in TMDs particularly appealing for studying correlated many-body physics and topological states of matter.


[1]. A. Srivastava et al., Nature Phys. 11, 141-147 (2015).

[2]. A. Srivastava et al., Nature Nanotech. 10, 491-496 (2015).

[3]. A. Srivastava and A. Imamoglu, Phys. Rev. Lett. 115, 166803(2015).




Short Bio:


Dr. Ajit Srivastava is a physicist working in the field of light-matter interactions at nanoscale with a special focus on the role of geometry and topology in solid-state. He is an Assistant Professor in the Department of Physics at Emory University, Atlanta, USA.


He completed his Bachelors degree from Indian Institute of Technology, Bombay (2001) and subsequently he obtained Masters degree from Rice University in 2003. He earned a PhD degree in Applied Physics from the Solid State Optical Spectroscopy Lab at Rice University in 2008. He worked as Postdoctoral Fellow (2009-2013) and later as a Senior Scientist (2013-2015) in Professor Atac Imamoglus Quantum Photonics Group at the Institute of Quantum Electronics, ETH Zurich, where he was one of the first person working on 2D materials. In 2016, he was appointed as Assistant Professor at Emory University where he now runs the Quantum Light-Matter Lab.


Dr. Srivastavas expertise in quantum optics, strong light-matter interactions, physics of atomically thin 2D materials, role of geometry and topology in low-dimensions, Berry phase and artificial gauge fields.



Web: http://www.physics.emory.edu/home/people/faculty/srivastava-ajit.html